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PREDICTION OF FILLING TIMES OF POROUS CAVITIES 

V. R. VOLLER AND Y .  F. CHEN 
Saint Anthony Falls Luboratory, Department of Civil Engineering, University of Minnesota, Minneapolis. MN, U.S.A. 

SUMMARY 

A recently proposed implicit scheme for tracking the filling front during liquid impregnation into porous moulds 
is extended to provide ‘one-shot’ predictions for the time to completely fill the mould and the location of the last 
point to fil l .  With general boundary conditions applied at the filling gates, it is shown that the time to fill and the 
location of the last point to fill can be predicted on solving, at most, two linear systems of equations (of size 
determined by the spatial discretization). This result is c o n k e d  by numerical filling experiments that show, for 
a variety of mould cavities, that ‘one-shot’ solutions agree exactly with filling time and location predictions 
obtained with multi-time-step simulations. 
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INTRODUCTION 

A problem of interest in flow in porous media is the tracking of the filling of an initially empty porous 
cavity with a liquid; see Figure 1 .  A major industrial application is in polymer moulding, in particular 
resin transfer moulding (RTM), which involves the injection of polymer into moulds which contain 
reinforced fibre mats. A number of numerical approaches have been developed for tracking the filling 
front during an RTM process.I4 For example, the approach used by Bruschke and Advani’ is based 
on a dual finite element/control volume (FE/CV) approach. In a given time step, for fixed location of 
the filling front, the pressure field is solved using a Galerkin finite element method; subsequently this 
field is used to update the fill fractions, 0 < F < 1, of control volumes and update the front movement. 
The updating of the filling front is an explicit operation and restriction of the time step is required. In 
essence, at any given point in the calculations, the time step used has to be chosen so that no more 
than one control volume in the domain completes filling. Despite the time step restriction, the FE/CV 
scheme is very robust, is mass-conserving and its performance can be improved with the use of 
innovative solution strategies.’ 

Recently Voller and Peng6 and Voller et al.’ have proposed a finite volume approach that shares 
many similarities with the FE/CV approach.’ The key differences are that (i) a single system of non- 
linear equations is solved for both the pressure P and fill fraction F and (ii) an implicit updating of the 
filling front location is employed, a feature that removes any stability restriction on the time step. In 
the testing of the method, Voller et d7 have demonstrated that for a given space grid, under the 
assumptions of (i) negligible gravity force (a reasonable assumption for RTM where typically 
imposed gate pressures are large) and (ii) constant filling conditions (in an RTM context, isothermal 
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Figure 1. An RTM problem 

filling with no curing), predictions of filling front location are independent of the choice of time step. 
That is, the front prediction at time r obtained with one large time step Atlarge = r is, to within 
machine rounding, identical with the front position obtained using n z 1 time steps Ar = t / n .  

In designing RTM processes, important pieces of information are the time required to fill the 
mould and the location of the last point to fill. Indeed, transient simulations of filling are often 
directed at obtaining predictions for these parameters. The objective of this paper is to utilize the 
independence of time step in the implicit filling scheme and develop a ‘one-shot’ prediction for the 
filling time and location. 

In order to provide a complete and consistent presentation, the next section outlines the basic filling 
algorithm previously presented by Voller and co-workers (see References 6 and 7 for full details) and 
presents validation for the approach. This is followed by the presentation of a theoretical analysis that 
confirms the independence of time steps and the presentation and demonstration of a ‘one-shot’ filling 
prediction algorithm, which is seen as the major contribution of this work. 

THE FILLING ALGORITHM 

The problem 

The test problem consists of a mould, containing a porous material, with impermeable walls. At time 
r < 0 the mould is empty of liquid. At time f = 0 flow enters the mould across a number of gates; see 
Figure 1. The objective of the analysis is to determine how long the mould takes to fill and the 
location of the last point to fill. The following key assumptions are made in this analysis. 

1. The liquid is Newtonian and incompressible. 
2. Darcy’s law holds 
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3. The macroscopic front between the entering liquid and escaping gas is sharp, i.e. the 

4. Liquid and mould properties remain constant during filling (isothermal filling). 
5 .  The pressure values required for filling are much larger than hydrostatic pressures and gravity 

saturated/unsaturated fnnge is small. 

terms can be neglected. 

Additional assumptions to make the exposition of the approach clearer are as follows. 

1. The domain is two-dimensional. 
2. The porous material is isotropic. 

It is stressed, however, that the development of the ‘one-shot’ filling approach does not depend on 
these two assumptions holding. 

The governing equation 

The domain in Figure 1 is covered by a grid of linear triangular finite elements (higher-order 
elements could also be used) defined by node points at their vertices. On this grid a mesh of control 
volumes is created by joining the midpoints of elements to the midpoints of elements sides. In this 
way each node point in the domain is associated with a control volume over which appropriate 
balances can be carried out; see Figure 2. 

During the filling of the domain the balance of the liquid phase over a given control volume can be 
written as6 

aF d - + c jS 4 u  - n dS = 0, 
at 

where A is the area of the control volume, S is the surface of the volume, n is the outward unit normal 
on S, u (m s- ’) is the velocity of the liquid phase, 4 is a microscopic phase marker (unity in a liquid- 
filled pore, zero in an empty pore), L is the porosity and F is the macroscopic fraction of liquid in the 
control volume, defined as 

Internal Node 
ontrol Volume 

Figure 2. Components of finite element/control volume discretization 



664 V. R. VOLLER AND Y. F. CHEN 

with A the area of the pores in the control volume. By Darcy’s law the specific discharge 
(m3 m3 s-- 1) is 

(3) 
k 
P 

q = cu = - - V P ,  

where k is the permeability, p is the viscosity and P is the pressure. Substitution of the specific 
discharge into (1) results in the conserved governing equation 

aF 
P 

with boundary conditions of prescribed liquid flux q on Sq, 

k 
P 

q = - - V P  - n 

(4) 

(note that q = 0 on the impermeable walls of the mould), and prescribed pressure (P(x , y )  on S,, 
where S = Sp + Sq. 

The numerical algorithm 

On using a fully implicit time integration, the flow balance, represented by (4), on the control 
volume centred on node I becomes 

where AI is the time step, the superscript ‘old’ refers to old time step values, the summation is over 
the control volume boundaries and Axj and AyJ are the length components (measured in a 
counterclockwise sense around node r )  along thejth boundary. Evaluations are made at the midpoints 
of the control volume boundanes and a fully discrete equation relating the nodal unknowns at node I 
to neighbouring nodal values is obtained on expanding in terms of the element shape functions. A 
considerable simplification can be obtained on noting that in the unfilled portions of the mould the 
pressure gradients are essentially zero. As such, the microscopic phase marker and pressure gradients 
in (6) are simultaneously zero and the phase marker can be dropped from the equation to arrive at 

Subsequent use of the element shape functions to approximate the pressure gradients results in a set 
of non-linear equations in the nodal pressure and fill fraction fields characterized by the point 
equation 

where the as are coefficients, the subscript nb refers to nodes that neighbour node I, the superscript m 
is an iteration counter and the term B, includes contributions from the domain boundaries. Note that, 
owing to the incompressibility of the filling liquid and the underlying balance stated in (l), solutions 
of (8) will satisfy mass conservation. 

Solution of the non-linear system defined by (8) hinges on noting that, assuming atmospheric 
conditions in the gas phase, the nodal pressure in empty and partially filled cells is PI = 0. Iterative 
solution is then achieved as follows. 



FILLING TIMES OF POROUS CAVITIES 665 

1. In a given time step and iteration at each node where F;” < 1, the nodal coefficient a, is set to a 
large value (10l6 is currently used). 

2. Then, on solving (8) (currently an unstructured point iteration solver is used), a value of Pf = 0 
is returned for nodal pressure in all the empty and partially filled cells. Furthermore, if the 
partially filled cells were correctly identified in step 1, the nodal pressures in all the filled cells 
will be consistent with the discrete balance represented in (7). 

3. To account for the fact that the current iterative nodal fill fraction may be incorrect, after 
calculation of the nodal pressure field the fill fractions in filling cells are updated by6 

This update is a reordering of the balance equation (8), applying the condition that the nodal 
pressure Pf = 0 in a filling cell, a condition imposed by the enhancement of the appropriate 
coefficient in step 1. For computational convenience the update in (9) is applied at every node 
with the under/overshoot correction 

F, = MAX[O, MPJ( 1, F,)] 

to account for fully filled/fully empty control volumes or control volumes that complete filling 
in the given time step. 

4. The iteration in steps 2 and 3 continues until the changes in the s u m  of the nodal fill fractions 
between interactions falls below a given small value 

5. On convergence in a time step the position of the filling front is obtained by interpolating the fill 
fraction field for the contour corresponding to F = 0.5. 

in the current work). 

Validation 

The above algorithm has been extensively validated by Voller and c o - ~ o r k e r s ~ . ~  on both one- and 
two-dimensional problems. In this paper a single validation is presented. Consider the case of filling 
an initially empty, one-dimensional, porous, horizontal tube under a constant applied pressure Po at 
x = 0. In this case the boundary position X ( t )  at any point in time is given by the analytical solution 

X ( t )  = J(2P*t),  

where P* = kP0/pc. Following Voller et ~ l . , ~  this problem is solved numerically with 
P* = 5 x lo5 m2 s-’. The front position predictions on a mesh of size Ax = 0.1 are compared 
with the analytical solution in Figure 3. The predictions are highly accurate, matching the level of 
accuracy that has also been achieved in two-dimensional 

1. In the results in Figure 3 a number of time steps have been used, i.e. At = 2 , 4  and 8 s. As noted 
in the Introduction, it is observed that the accuracy of the front prediction is not affected by the 
choice of time step, a result that has been shown to hold in two-dimensional problems involving 
filling fronts with high degrees of m~rphology.~.~ This observation, with supporting analysis, is 
the underpinning for obtaining ‘one-shot’ solutions of the filling time and location of fill. 

2.  Another feature of the implicit filling scheme is its conserved nature. In problems based on 
well-constructed grids, mass imbalances are negligible (on the order of 

Note the following. 
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Figure 3. Movement of filling front in a porous, one-dimensional tube filled with a constant pressure gate 

ANALYSIS 

Before a method to predict the filling time and location of the last point to fill is presented, it is 
necessary to theoretically c o n h  that predictions obtained with the implicit filling algorithm are 
independent of the choice of time step. This is achieved by showing that the filling front position at 
time t predicted with a multi-time-step simulation At = r/n (n =- 1) is identical with the front position 
predicted with a single time step Atlarge = t. This essentially requires for a given time step an 
existence and uniqueness argument for the non-linear system defined by (8). 

The matrix form 

A filling simulation based on the implicit algorithm outlined above involves at each time step the 
solution of the system 

where, with reference to (8), A is the matrix of coefficients, P is the vector of nodal pressures, F is the 
vector of nodal fill fractions, the vector B includes contributions from the fixed pressure and fixed 
flux boundaries andj  = 1 ,  . . . , n is the time step number ( j = 0 corresponds to the initial condition). 
With known fill field Fj-'  a valid filling solution requires nodal fields P and F J  that satisfy (12) 
subject to the conditions 

PI 20 V nodes I, 

PI = 0 at every node where F{ < 1, 

O<F{,< 1 V nodes I. 
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Since the matrix A in (12) results from a conserved discretization of the Laplacian, it has two 

1. It is positive definite. 
2. in the context of the general linear equation AP = C, 

important properties. 

if C,<O VI, then P,<O V I ,  

if C,>O VI, thenP,>O VI. 

Note that in problems that only involve prescribed fluxes at the boundaries, the above properties can 
be retained by arbitrady fixing a nodal value of P followed by, on solution, a rescaling with an 
additive constant if required. 

Existence 

Taking guidance from the explicit scheme,' one way of obtaining a valid solution of (12) is to 
enforce condition (13) based on the previous fill fraction field FJ-' and solve using the smallest time 
step Ar J that exactly fills at least one control volume in the domain. In this way a valid solution of 
(1 2) is always guaranteed. Further, choosing a single constant time step to be a common factor of the 
set of time steps A t ;  will also guarantee that control volumes never overfill and the existence of a 
solution to (1 2) at each step. After the multi-time-step simulation the contributions at each step can be 
combined into the single equation 

(15) 
1 

A P = - - F + B ,  
t 

where F = F and 

1 "  
P = - C  P'. 

n,=o 

On noting that = 0, equation (1 5) is recognized as the system that would be solved if a single time 
step At, = r had been chosen for the filling simulation. Further, the nodal fields P and F also satisfy 
the conditions given in (1 3). Hence, on combining the multi-step simulation results according to (1 6), 
a valid solution of the single-time-step simulation (1 5) can always be found. This solution will have 
the same fill fraction field as the multi-step simulation but a different pressure field; see equation (1 6). 

=F 

Uniqueness 

The result in the previous subsection shows that a valid filling solution for the single-time-step 
simulation can always be obtained on combining the solutions from the multi-step simulation. In 
order to completely show the equivalence between the multi-step and single-step predictions of 
filling, it is necessary to prove that the solution of (15) is unique, i.e. for a given value oft  there is one 
and only one choice of nodal pressure field P and one and only one choice of nodal fill fraction field F 
that satisfy (1 5) subject to the conditions in (1  3). 

As a first step towards showing uniqueness, it is noted that if the pressure field P satisfies (1 5), it 
can be written as 

P = aPF + pB, (17) 
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where a = l/t, 
APF = -F, 

with PF = 0 at all fixed pressure gates, and 

APB = 8. (19) 
Further, if filling is occurring, all entries in F and B are positive and the conditions on A given in (14) 
imply that P," > 0 and PF < 0 for all nodes I in the domain. 

Following a typical format for a uniqueness proof, the assertion is made that: 

for a given value of a there exists at least two valid solutions of (1 5) ,  the nodal fields P I ,  F, and 
the nodal fields P, , F,. 

Let f i (x ,y )  define the location of the filling front based on the field F, and let f , ( x , y )  define the 
location of the filling front based on the field F,; see Figure 4. With reference to this figure, consider 
the regions marked Q, and R2. The region R, comprises the parts of the domain located between 
frontsf, andf, withf, ahead off,, while the region R2 comprises the parts of the domain located 
between frontsf2 andfi withf2 ahead off,. Then in R1 

and it follows from (17) that if both candidate solutions are valid, then 
[P2], = O  and [ P , ] , > O  V l  E R ~  (20) 

Using similar arguments, it can be shown that 

[P;], >, [*I, V nodes I E R2. (22) 
Now consider the linear equation 

A(PF - P!) = AF, (23) 
where AF = F, - F, . In R, the term AF < 0, in Q, AF >, 0 and in the remainder of the domain 
AF = 0. Coupled with the positive definite property of A, this implies that 

[Py], < [el, at, at least, one node I E Q, 

[P:], > [P;], at, at least, one node I E 4. 
or (24) 

Region nl  
Region n 2  

Figure 4. Assumption of two flow Front predictions at time r 
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In any given case the condition in (24) will be in contradiction with the conditions in (21) or (22) and 
the assertion that two solutions of (1 5 )  are valid is not true. Hence, using the existence argument of 
the previous section, we have the following. 

1. For a given value of a there is one and only one valid P and F field that satisfies ( 1  5) .  
2. The fill fraction field obtained with a multi-time-step simulation based on the implicit algorithm 

is identical with the fill fraction field obtained with a single-time-step solution, which is 
consistent with the results presented in Figure 3. 

A 'ONE-SHOT' PREDICTION OF FILLING TIME AND LOCATION 

The general case 

Consider filling in the two-dimensional mould through three gates; see Figure 1. At gates 1 and 2 
constant pressures P ,  and Pz are applied and at gate 3 a constant flux q3 = 0.01 m3 m-' s I is 
applied. Based on the proof of independence of time step presented above, the point of complete 
filling can be determined on solving 

AP = -a1 + B, (25) 

essentially equation (1 5 )  with F set equal to 1. With reference to the condition in (1 3), a valid solution 
of the non-linear equation (25) involves finding the value of a(= 1/ffia) such that the resulting nodal 
pressure field P, 2 0 for all nodes I, with P/  = 0 at, at least, one node. An appropriate solution is 

P = aPE + pB, 

where the pressure fields P" and PB are obtained on solving the two linear system 

APE = -1, 

with PF = 0 on all constant pressure gates, and 

Note that by ( 14), at all nodes I in the domain, P," < 0 and, assuming at least one fixed pressure node 
on the boundary, > 0. In this way there exists one and only one value of a for which P, 2 0 for all 
nodes I, with PI = 0 at, at least, one node. This value of a is the inverse of the filling time and the 
node (or nodes) where P, = 0 is the last point to fill. Hence for a given spatial discretization 
(effectively the coefficient matrix A) the time to fill a cavity and the last point(s) to fill in that cavity 
can be predicted in 'one shot' on solving the two linear equations (27) and (28). The appropriate 
value of a and the last point to fill are determined on setting P, = 0 in (26) and defining a nodal a 
field to be 

p? 
Pi 

a, =--  

Then, on defining min(a,) to be the minimum nodal a, the filling time tfill = l/min(or,) and the 
corresponding node is the last point to fill. 
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Fixed Flux Gates 

In problems that only have fixed flux gates, the above procedure is modified. Since the volume of 
the mould is known, with a fixed flux condition the time to fill, f,,, = I /%,  can be readily calculated. 
The location of the final filling point is found by arbitrarily setting a single nodal pressure to P, = 0 
and solving the now linear system given by (25). The last point to fill then corresponds to the node 
with the minimum pressure. 

RESULTS 

Figure 5 shows a multi-time-step simulation of the filling of the three-gated mould in Figure 1, using 
the Pi = 200 kPa, P2 = 300 kPa, q3 = 0.01 m3 m-* s-‘, p = 10 N s m-2, k = 2 x  

m2 and c = 0.6, with, in a 0.01 m layer adjacent to the wall, a 10-fold enhancement of the 
permeability (simulating the effects of poor fitting of the mat to the mould)6. With these data the 
‘one-shot’ predictions, using the grid shown in Figure 2, for the time to fill is ffill = 28.6 s and for the 
node location of the last point to fill is xfill = 0.03 m, yfill = 0.1 3 m, values that agree exactly with the 
multi-time-step solution. Figure 6 shows the contours of the P field obtained on solving (26H28). On 
comparison with the multi-time-step solution the last point to fill can be clearly identified in this 
figure. 

Figure 7 shows the multi-time-step filling predictions of a mould with a constant flux gate. The 
conditions are almost identical with those of the previous problem, but in this case the fixed pressure 
locations, gates 1 and 2, are shut off during the simulation and only the fixed flux gate, gate 3, is 

conditions 

0.03 

Figure 5 Filling of RTM cavity shown in Figure 1 

0.1 

0.03 
Figure 6. Pressure contours P / 3  x lo’, P calculated 

(26). for RTM cavity of Figure 5 
with 
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ligure 8. Pressure contours P / 3  x lo5, P calculated with 
(26) for flux-filled RTM cavity of Figure 7 

active. The value of tfill = 60 s is readily obtained on dividing the mould volume by the gate area and 
prescribed flux. A plot of the P field obtained by solving (25)  with the nodal pressure at 
x = 0 . 0 4 5 , ~  = 0.045 set to zero is shown in Figure 8. The minimum value in the P field clearly 
corresponds to the last point to fill identified by the multi-time-step solution in Figure 7. 

CObiCLUSIONS 

In polymer moulding, estimates of the last point to fill and the time taken to fill are important pieces 
of process information. The above algorithm provides a way, under the assumptions of constant 
conditions during filling, to predict the time to fill and the last point to fill on solving, at most, two 
linear sets of equations (with the size determined by the spatial discretization). This approach is seen 
as a significant advantage over the alternative of determining the filling pattern using a multi-time- 
step simulation, an approach that typically involves the solution of multiple non-linear systems of 
equations. 

On reference to Figure 5 or 6 it is observed that the last point to fill is located in the interior of the 
mould. In the analysis we have assumed that the empty cavity is in vacuum or that the air, pushed by 
the incoming liquid, can easily escape through the mould boundanes. In reality the air could become 
trapped, the pressure build-up could prevent additional filling and a so-called dry spot could form. In 
polymer moulding operations the object of a filling simulation is to predict the possible location of 
dry spots so that vents can be located to allow the air to escape. Clearly the proposed algorithm is 
effective in determining the dry spots that occur at the end of filling. Dry spots, however, can also 
form during the early stages of the filling process, located at points not associated with the last point 
to fill. Further work is being directed at the ‘one-shot’ prediction of all possible sites for dry spots in 
complex RTM moulds. 
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